Votre navigateur est obsolète !

Pour une expériencenet et une sécurité optimale, mettez à jour votre navigateur. Mettre à jour maintenant

×

Olivier Doubiani

Olivier Doubiani

INGENIEUR Data Scientist - Engineer / Chef de Projet Technico-Fonctionnel / Business Analyst

39 ans
Permis de conduire
RUEIL MALMAISON (92500) France
Consultant Ouvert aux opportunités
DATA SCIENTIST/ENGINEER
Ingénieur en Informatique Médicale et Big Data.
Multi compétences : Statistiques, Informatique et Biologie et Data Sciences/Data Engineering
Expériences
  • Prise en charge de la partie technique de la migration des données clients et des voitures d'OPEL / VAUXHALL dans le SI de PSA suite à son rachat pour le logiciel CRM SALESFORCES
  • Prise en charge de la gestion de projet de la migration des données clients et des voitures d'OPEL / VAUXHALL dans le SI de PSA suite à son rachat pour le logiciel CRM SALESFORCES
  • Mapping de champs de base de données pour la migration
  • Participation au Comité de Pilotage au niveau ComEx
  • Assistance à la gestion et coordination du projet de délocalisation du diplôme DSTI “Applied MSc en Ingéniérie des Données” à l’EMPSI Casablanca, Maroc pour lancement en Janvier 2019
  • Tournage de vidéos promotionnelles et de détails du programme
  • Intervention à la radio Marocaine LUXE RADIO pour parler des enjeux du Big Data en Afrique
  • Aide à la mise en place des procédures de recrutement
  • Etude de faisabilité d'un objet connecté
  • Tests de validation d'un site web
  • Correction de code d'une application Access
En savoir +
  • Analyse, Installation, Déploiement, Suivi au démarrage, Formation, Validation et Recettage d'un progiciel de gestion de dons du sang et de sécurité transfusionnelle au patient.
  • Création de procédures stockées et de requêtes statistiques en SQL et PL/SQL
  • Mise en place de BDD sous SQL Serveur et Oracle (Création de Tables Spaces et de la structure de données)
  • Installation d’interfaces entre le système Hemobank et un système de gestion de laboratoire à la norme HL7
  • Installation d’interfaces entre le système Hemobank et un système de gestion des identités patient (norme HL7 et HPRIM)
  • Installation d’interfaces entre le système Hemobank et des automates d’Immunohématologie, de Détection Moléculaire de Virus, et de séparateur de sang total à la norme HL7 et ASTM
  • Mise en place technique et Validations fonctionnelles d’interfaces avec des systèmes de gestion d’Hôpitaux
  • Mise en place technique et Validations fonctionnelles d’interfaces avec des automates de Sérologie
  • Mise en place technique et Validations fonctionnelles d’interfaces avec des logiciels de gestions de données d’identité patients
  • Support Client
  • Validation de nouveaux développements
  • Support technique
  • Ajustement de paramétrage
  • MEDINFO IHS – Mise à jour, Maintien du logiciel de gestion de banque de sang
  • Pilotage de nouveaux développements avec deux équipes de développeurs, à Nice (France) et à Tunis (Tunisie)
  • Application de la méthodologie Agile avec les équipes de développements
  • Application de la méthodologie PMI-PMP avec les clients et les revendeurs.
  • Aide à la définition de scénarios de tests pour validation fonctionnelle du paramétrage
  • Création de batch PERL / PYTHON / LINUX / DOS pour aiguillage de fichiers dans différents dossiers en fonction de leur contenu
Formations

Machine Learning

OpenClassRooms

Janvier 2019 à 2020
1- Définissez votre stratégie d'apprentissage !
2- Concevez une application au service de la santé publique
3- Anticipez les besoins en consommation électrique de bâtiments
4- Segmentez des clients d'un site e-commerce
5- Catégorisez automatiquement des questions
6- Classez des images à l'aide d'algorithmes de Deep Learning
7- Développez une preuve de concept (option stage)
8- Participez à une compétition Kaggle !

MSc in Data Engineering

DSTI Institute

Octobre 2018 à juin 2019
Data Science
Applied Mathematics for Data Science (25hrs)
– Calculus – Differentiation – Trigonometry & Complex Numbers
Foundations of Statistical Analysis & Machine Learning (25hrs)
– Probabilities and distribution – Descriptive Statistics – Introduction to Inference
Big Data Processing (25hrs)
Statistical Analysis of Massive and High-dimensional Data (25hrs)
Deep Learning on GPU with pyTorch (25hrs)
Recurrent Neural Networks – LSTM – Residual Networks
IT Fundamentals
Computer Systems (25hrs)
Computer Architecture – Operating Systems & Vistualisation – Networking – Storage
Cloud Computing – Amazon AWS (50 hrs)
Preparation to AWS Certified Solutions Architect – Associate Certification – Comparative overview of Microsoft Azure
Cloud Computing – Microsoft Azure (25 hrs)
Comparative overview with Amazon AWS on core services (Networking, Compute, Storage, Database) & focus on Azure“Data Managed Services” (chiefly Azure Machine Learning Studio, Cognitive Services, Data Lake, Databricks, Stream Analytics)
Semantic Web technologies for Data Science developments (25 hrs)
Representing and querying web-rich data (RDF, SPARQL), Introducing Semantics in Data (RDFS, Ontologies), Tracing and following data history (VOiD, DCAT, PROV-O)
Data management
Advanced SQL for Data Wrangling (25 hrs)
Complex joins & subqueries, stored procedures & triggers

Relational Databases Management Systems (25 hrs)
Using MySQL & Microsoft SQL Server: stand-alone and cluster deployments, integration in software, ETL, persistence frameworks

NoSQL databases (25 hrs)
Key-value store, Document store, Graph database , hybrid approaches with Apache Cassandra

The Hadoop & Spark Ecosystem (50 hrs)
HDFS, scheduling & resources management – Workflow management & ETL, Dataflow management, Scalable Enterprise Serial Bus – Realtime processing, Machine Learning, Data Exploration & Visualisation

Data Pipeline (25 hrs)
XML dataflow, DTD & Schemas, XLS Transformation, JSON & Transformations – Cloud-based solutions with Glue in AWS & AWS Kinesis – Open-source solutions with Apache Kafka & Beam

MSc in Applied Data Science & Big Data

DSTI Institute

Octobre 2017 à octobre 2018
Core Data Science & Artificial Intelligence – 150hrs (9 ECTS)
Applied Mathematics (1 ECTS)
Calculus – Linear Algebra – Trigonometry & Complex Numbers
Continuous Optimisation (1 ECTS)
Critical points – multiple variables function optimisation – gradient methods – constraint-based optimisation with Lagrange Multipliers
Foundations of Statistical Analysis & Machine Learning Part I & II (2 ECTS)
Probabilities & distribution – tests – inference – regression – clustering
Artificial Neural Networks (1 ECTS)
Data representation & distributed representations – universal interpretation theorem – probabilistic interpretation – backpropagation & stochastic gradient descent
“The SAS Ecosystem DSTI Chair” (3 ECTS)
Preparation for SAS Certified Predictive Modeler using SAS Enterprise Miner 14: SAS/Base & SAS/STAT
Time-Series Analysis using SAS (1 ECTS)
Forecasting using SAS Software: a programming approach (SAS/ETS)
Core Data Engineering – 250hrs (9 ECTS)
Software Engineering (2 ECTS)
Classical design & programming – object-oriented design & programming

Data Wrangling with SQL (1 ECTS)
Advanced SQL queries – dynamic SQL – stored procedures & triggers

Amazon AWS “Cloud-Computing DSTI Chair” (3 ECTS)
Preparation for AWS Certified Solutions Architect – Associate

The Hadoop & Spark Ecosystem (3 ECTS)
HDFS – scheduling & resources management – workflow management & ETL – dataflow management – scalable enterprise serial bus – real time processing – machine learning – data exploration & visualization

Applied Data Science & Artificial Intelligence - 150hrs (10 ECTS)
Deep Learning with Python (2 ECTS)
Introduction to PyTorch – deep learning – neural architectures & their applications – neural network training on a GPU (practice)

Advanced Statistical Analysis & Machine Learning (2 ECTS)
CART & random forests & applications to MapReduce – features selection & engineering – models comparison & competition

Survival Analysis using R (2 ECTS)
Probabilistic description of survival data – parametric / non-parametric / semi-parametric (Cox model) statistical methods – Applications to Big Data with penalised Cox regression

Discrete Optimisation (2 ECTS)
Graph-based modelling & algorithms

Agent-Based Modeling for Population Behaviour (1 ECTS)
Modelling objectives – model types – matching modelling approaches to studies objectives – ODD protocol – ABM objectives & components

Semantic Web for Data Science (1 ECTS)
Representing & querying web-rich data (RDF, SPARQL) – introducing semantics in data (RDFS, ontologies) – tracing & following data history (VOiD, DCAT, PROV-O)

Management, Ethics & Law – 50hrs (2 ECTS)
Data Regulations MEL1 (1 ECTS)
Data ownership and protection laws and regulation: Private Data – Corporate Data – EU Data Protection Act, GDPR, US-EU Data Transfers regulations
Project Management MEL2 (1 ECTS)
Project Management: PMP-PMI and Agile Approaches: PMBOK (PMI) – Agile Approaches – Kanban
En savoir +

HarvardX Certification

EdX

Depuis août 2018

IUP Génie Physiologique et Informatique

Université Poitiers

Septembre 2005 à septembre 2008
MASTER II (DESS) Double Compétence Informatique et Biotechnologie

Licence Biologie Cellulaire et Moléculaire

Université Orléans

Septembre 2001 à 2005

DUT Informatique

Université d'Orléans

Juin 2003 à septembre 2004
DUT Informatique

DUT STID

Université de Perpignan

Juin 1999 à septembre 2001
IUT Statistiques et Traitement Informatique des Données
  • Optimisation d'Algorithmes
    Sorting and Searching, Trees and Graph Algorithm, Greedy, Divide-and-Conquer, Back Tracking and Dynamic Programming.
  • Connaissances légales de la loi GDPR
    GDPR, US-EU Data Transfers Regulations.
  • Séléctions de Modèles Prédictifs
    Subset, Shrinkage - Ridge&Lasso, Dimension Reduction with PCA and Paritial Least Square.
  • Artificial Neural Network & Deep Learning
    Data representation, Probabilistic interpretation, backpropagation
  • Semantic Web technologies for Data
    Science
    RDF, SPARQL, VOiD, DCAT
  • Statistiques
  • Suite statistique et modélisation SAS
  • Gestion de Projet IT
    PMP – PMI & Agile Approaches.
  • Analyse de séries temporelles
    Hypothesis Testing, ANOVA Analysis, Survival Analysis, Linear Regression, Cross Validation, Hierarchical Clustering
  • Classification et Arbres de Régressions / Random Forest
    CART, Bagging, Random Forest, Boosting Support Vector Machine
  • Data Wrangling backed with MS SQL
    Server
    Advanced SQL queries and .Net for complex ETL, dynamic reporting
  • Systèmes dynamiques
    Causal loop diagrams, Chaos Theory
  • Machine Learning
  • Certification Data Science Methodology
    https://courses.cognitiveclass.ai/certificates/f557bc0ff31c44488b6f8204b29e9157
  • Python, R,Java, ADA, C/C++, Javascript, SQL, PL/SQL
  • SalesForce, Jira Atlassian,SAS, BO, Talend,Oracle, SQL Serveur, GED, VMWare, Jira, Hematos, Hemobank
  • Anglais : Courant (TOEIC : 850)
  • Arabe : Bonnes Notions
  • Espagnol : Notions
  • Français : Langue Maternelle
Loisirs

Conférence

  • J'ai donné un conférence sur le BIG DATA et l'Intelligence Artificielle le 30 Octobre 2018 pour le grand publique en tant que conférencier

ASSOCIATIONS

  • Membre du Rotary Club Sophia Antipolis

Cinéma

  • Cinéma Science Fiction, Comédies, Arts et Essais